SEMINÁRIO DE GEOMETRIA

Dia 29 Junho (sexta-feira), às 13h30, sala 6.2.33

Flops and derived categories via n-tilting torsion classes

Luisa Fiorot
Università degli Studi di Padova

Abstract

In the paper [2] we introduced the notion of n-tilting torsion class \mathcal{E} in an abelian category \mathcal{A}. which generalizes the notion of tilting torsion class for $n=1$ and produces an equivalence of derived categories $D(\mathcal{A}) \cong D\left(\mathcal{H}_{\mathcal{E}}\right)$ where $\mathrm{H}_{\mathcal{E}}$ is the t structure associated to \mathcal{E} in $D(\mathcal{A})$.

This result and the techniques involved in this constructions apply to different contexts: the study of the relative $\mathrm{D}_{X / S}$-module (see [4]), derived equivalence induced by tilting modules in representation theory (see [3]) and to the so called homological minimal model program. This last application would be the main subject of this seminar.

We will provide an introduction to Bridgeland paper [1] compared with the one of van den Bergh [5] where the authors proved that the bounded derived categories of coherent sheaves of two smooth threefolds Y and Y^{+}related by a flop (on X) are equivalent.

References

[1] T. Bridgeland, Flops and derived categories, Invent. Math. 147 (2002), no. 3, 613-632.
[2] L.Fiorot, n-Quasi-Abelian Categories vs n-Tilting Torsion Pairs, ArXiv e-prints (2016).
[3] L. Fiorot, F. Mattiello, and M. Saorín, Derived Equivalences induced by nonclassical tilting objects, Proc. Amer. Math. Soc. 145 (2017), no.4, 1505-1514.
[4] L. Fiorot, T. Monteiro Fernandes, t-Structures for relative D-modules and t-exactness of the de Rham functor, Journal of Algebra 509 (2018), 419-411.
[5] M.van den Bergh, Three-dimensional flops and noncommutative rings, Duke Math. J. 122 (2004), no. 3, 423-455.

Seminário financiado por Fundos Nacionais através da FCT - Fundação para a Ciência e a Tecnologia no âmbito do projeto UID/MAT/04561/2013

